Nadia K. El-Aasar*, Khaled F. Saied
Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt, E-mail: nadia.alaasar@yahoo.com Received September 24, 2006

The hitherto unknown 5-(2-aryl-2-oxoethyl)-4-oxo-1,3-thiazolidines 1a-l have been synthesized via cycloaddition process between thiourea and/or its derivatives with 3-aroylpropenoic acids. ${ }^{1} \mathrm{H}$ NMR spectra revealed the presence of $\mathbf{1 a} \mathbf{a}$ as a tautmeric mixture. The presence of the thiazoline tautmers (1a-c)' was confirmed by methylating the tautmeric mixture, to the respective methylated derivatives $2-\mathrm{N}$ -methylanilino-5-(2-aryl-2-oxoethyl)-4-oxo-1,3-thiazolines 2a-c and $\mathbf{1 g - i}$. Acidic treatment of $\mathbf{1}$ provided the respective 2 -oxo homologues $\mathbf{3 a - i}$. When $\mathbf{1 a - d}$, \mathbf{k} were refluxed with DMF, molecular rearrangement was achieved, providing the 4-oxo-2-thioxoimidazolidine isomers $\mathbf{4 a}-\mathbf{d}, \mathbf{k}$. Bromination of $\mathbf{4 a}$ and $\mathbf{4 d}$ in hot acetic acid afforded the respective (E, Z)-5-benzoylmethylene derivatives $\mathbf{5 a}$, d which were prepared authentically. Thiation of $\mathbf{1 a - c}$ and $\mathbf{4 a - c}$ gave 5 -aryl-2,3-dihydro-2-phenyliminothieno[2,3-d]thiazoles 6a-c and 1-phenyl-5-aryl-2,3-dihydro-2-thioxothieno[2,3-d]imidazoles $\mathbf{7 a}-\mathbf{c}$, respectively. The proposed structures have been confirmed by elemental analysis and spectroscopic data. The selected products showed different antimicrobial effect.
J. Heterocyclic Chem., 45, 645 (2008).

INTRODUCTION

The reported biological activity for many thiazolidine derivatives [1] such as antifungal [2], antiviral [3], anticonvulsant [4] and antitubercular [5] as well as those reported for imidazolidines [6-9] stimulated the authors to prepare new derivatives of these classes.

Un-substituted thiourea has been reported to react with maleic anhydride, maleic acid, fumaric acid and methyl hydrogen fumarate, to afford 4-oxo-1,3-thiazolidines [10]. Similar to these methods, the thiazolidinone derivatives 1 were synthesized from thioureas and 3-aroylpropenoic acids [11]. The study provides also a mild and facile route to the 4-oxo-2-thioxoimidazolidines 4 , compared with previous methods for similar synthesis [12]. Moreover, the reported biological activity for different thiophenes [13] encouraged us to synthesize thiazole 6 and imidazole 7 derivatives containing this moiety, easily by thiation of $\mathbf{1}$ and 4, respectively with Lawesson's reagent [14].

RESULTS AND DISCUSSION

When thiourea, phenyl-, 1-methyl-3-phenyl- and/or 1,3diphenylthiourea was conducted to react with 3-aroyl-
propenoic acids [11], cycloaddition process was achieved providing 5-(2-aryl-2-oxoethyl)-4-oxo-1,3-thiazolidines 1a-l in a good yield (Scheme 1).

IR spectrum of 1a exhibited absorption bands for aroyl CO group at $1684 \mathrm{~cm}^{-1}, v_{\mathrm{CO}}$ for cyclic amide at $1614 \mathrm{~cm}^{-1}$ besides two absorption bands for v_{NH} at $3179,3141 \mathrm{~cm}^{-1}$. The mass spectrum of $\mathbf{1 a}$ exhibited an intense molecular ion peak m/e 310 (80%) and a base peak m/e 205 (100\%) for the ionic radical [$\mathrm{M}-\mathrm{PhCO}]^{+}$, besides other pattern of intense peaks corresponding to the fragments, $\left[\mathrm{PhCOCH}_{2}\right]^{+} \mathrm{m} / \mathrm{e} 119$ (31 \%), $[\mathrm{PhCO}]^{+} \mathrm{m} / \mathrm{e} 105$ (65 \%) and $[\mathrm{Ph}]^{+} \mathrm{m} / \mathrm{e} 77$ (77 \%). The ${ }^{1} \mathrm{H}$ NMR spectra of 1a-c exhibited patterns of successive doublets in the aromatic H region at $\delta 7-8 \mathrm{ppm}$, besides complicated multiplet for the thiazolidinone proton at $\sim 4.6 \mathrm{ppm}$ and deformed multiplet $\sim 4.0-4.2 \mathrm{ppm}$ for the $\left(\mathrm{CH}_{2}\right)$ protons (- $\mathrm{CO}-\mathrm{CH}_{2}$). These complicated spectra were interpreted due to the existence of 1a-c as a tautmeric mixture.
The presence of the thiazoline tautmers (1a-c)' has been confirmed by treating 1a-c with ethanolic KOH solution, providing the respective potassium salts. Alkylating [15] the hypothetically formed salts with dimethyl sulphate, afforded the expected methyl derivatives $\mathrm{Ph}-\mathrm{N}-\mathrm{CH}_{3} ; 2-\mathrm{N}-$

Scheme 1

Scheme 2

$Y=\mathbf{1}, \mathbf{2} \mathbf{a} ; \mathrm{H}, \mathbf{b} ; \mathrm{Br}, \quad \mathbf{c} ; \mathrm{Cl}$
Synthesis of 1g-i, 2a-c
methylanilino-5-(2-aryl-2-oxoethyl)-4-oxo-1,3-thiazolines 2a-c and CO-N-CH3 ; 2-phenylimino-3-methyl-5-(2-aryl-2-oxoethyl)-4-oxo-1,3-thiazolidines 1g-i (Scheme 2).

The structure of the methylated products 1g-i has been supported by elemental analysis and spectroscopic data. Methylation was further confirmed by m.p matching with the previous samples, the appearance of $\mathrm{N}-\mathrm{CH}_{3}$ signal in the ${ }^{1} \mathrm{H}$ NMR spectra $\delta \sim 3.3 \mathrm{~s} 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)$, rather than the disappearance of the NH signal. Besides the IR spectra which were devoid of any NH absorption bands.
The structure of $\mathbf{2}$ has been proven via authentic samples were prepared from 1-phenyl-1-methylthiourea [16] and 3-aroylpropenoic acids. Moreover, the structure of 2 was also confirmed by the appearance of $\mathrm{Ph}-\mathrm{N}-\mathrm{CH}_{3}$ singlet in their ${ }^{1} \mathrm{H}$ NMR at $\delta \sim 3.6$, besides the mass spectra which displayed the expected molecular ion peaks.

When the 2-phenyl/imino 1a-I was treated with HCl in boiled acetic acid solution, hydrolysis was achieved [15,17], providing the corresponding 2-oxy derivatives

3a-i (Scheme 1). The structure for compound $\mathbf{3}$ was confirmed by correct elemental analysis, ${ }^{1} \mathrm{H}$ NMR and the IR spectra which recorded the appearance of thiolactone absorption bands $\sim 1735-1760 \mathrm{~cm}^{-1}$. Moreover, the structure was further supported by mass spectra, which showed the correct molecular ion peaks. The ${ }^{1} \mathrm{H}$ NMR spectrum of 3a showed at $\delta 7.96 \mathrm{~d}, 2 \mathrm{H} ; 7.64,7.06$ two deformed $\mathrm{t}, 1 \mathrm{H}, 2 \mathrm{H}(\mathrm{Ph})$, at $\delta 7.26,1 \mathrm{H}(\mathrm{NH})$, at $\delta 4.68$, dd, $1 \mathrm{H}(\mathrm{H}-5), \delta 4.69,3.59 \mathrm{ppm} 2 \mathrm{dd}$, each1H ($\mathrm{PhCO}-\mathrm{CH}_{2}$) and the EI-MS exhibited $\left[\mathrm{M}^{+}\right] \mathrm{m} / \mathrm{e} 235$ (21.9 \%).

Upon reflux with dimethylformamide, the derivatives under investigation 1a-c, \mathbf{d} and \mathbf{k} were found to undergo molecular rearrangement into the respective 1-phenyl-, 1,3-diphenyl-, and 5-(2-aryl-2-oxoethyl)-4-oxo-2-thioxoimidazolidines $\mathbf{4 a - c}, \mathbf{d}$ and \mathbf{k}, respectively (Scheme 3). The 2-imino $\mathbf{1 k}$ was refluxed for longer hours to undergo this rearrangement, though in a poor yield of $\mathbf{4 k}$.

Under the acidic conditions, Edman reaction described a previous conversion for similar thiazolidinones [18].

Accordingly, rearrangement of $\mathbf{1}$ with boiled DMF, in the absence of any acidic conditions, could not be rationalized in terms of Edman's mechanism. Moreover, the acidic conditions were previously found to effect the conversion of $\mathbf{1}$ into $\mathbf{3}$ [15,17].

Conversion of $\mathbf{1}$ into the imidazolidines $\mathbf{4}$ has occurred most likely, via the suggested ionic intermediate [E], which was believed to be generated through the dipolar form II, by heterolytic cleavage along the 1,$5 ; \mathrm{S}-\mathrm{C}$ bond (Scheme 4). The charges of the ionic resonance forms I, II and the intermediate have stabilized by the polar DMF solvent $[19,20]$, while further stabilization was provided by the phenyl group present at position-2. Therefore, the 2-phenylimino 1a-d were sufficiently supported to undergo this rearrangement, in a good yield of 4a-d. Whilst, the 2 -imino $\mathbf{1 k}$, which is devoid of this stabilizing phenyl
group, was unable to endure the transformation, providing poor yield of $\mathbf{4 k}$.
In spite of the disappointing yield of $\mathbf{4 k}$, nevertheless it was the result that supported the proposed mechanism.

The structures of $\mathbf{4}$ were proved by elemental analysis and mass spectra, which exhibited the same [M^{+}] peak values as their parent isomers 1 . The ${ }^{1} \mathrm{H}$ NMR and IR spectra supported the structural nature between 1 and 4.

Moreover, treatment of 4a, \mathbf{d} with bromine in hot acetic acid solution [21], was carried out affording the expected (E, Z) 5-benzoylmethylene analogues 5a, d. Then, it was verified that compound 4 acquires the imidazolidinone conformation when 5a, \mathbf{d} were authentically prepared, by condensing 1 -phenyl and 1,3-diphenyl-4-oxo-2-thioxoimidazolidine [22,23], respectively with phenylglyoxal (Scheme 3).

Scheme 3

Isomerisation of 1 into 4

Table 1
Antimicrobial activity of tested products
Inhibition zone diameter ($\mathrm{mm} / \mathrm{mg}$ Sample)

On the other hand, the structure of compound 5 was also supported by elemental analysis and spectroscopic data. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 a}$ displayed at $\delta 6.2$ (s, 42%, olefinic H) for isomer (E) and 6.84 (s, 58%, olefinic H) for isomer (Z), $7.0-7.63 \mathrm{~m}, 6 \mathrm{H}$ (aromatic H), 7.9, 7.07 each d, 2 H (aromatic H), $9.45 \mathrm{~s}, 1 \mathrm{H}(\mathrm{NH})$. The configuration assignment of these isomers is based on the accepted assumption that the olefinic proton in isomer (Z) is more deshielded by the 4 -oxo group, compared with the (E) counterpart [24].

According to our previous studies [25], thiation of 1a-c and 4a-c with Lawesson's reagent [14] was carried out (Scheme 3), affording 5-aryl-2,3-dihydro-2-phenylimino-thieno[2,3-d]thiazole derivatives 6a-c and 1-phenyl-5-aryl-2,3-dihydro-2-thioxothieno[2,3-d]imidazoles 7a-c, respectively. The IR spectra of either $\mathbf{6}$ or $\mathbf{7}$ were devoid of any CO absorption bands. The mass spectra of $\mathbf{6 a - c}$ as well as 7a-c displayed the same molecular ion peak values, showing the isomeric relationship between these compounds. The spectra showed also pattern of other fragments supporting the construction of these molecules.
Antimicrobial activity (Table 1) was measured in Micro Analytical Center, Cairo University, Giza, Egypt. The method was performed by saturating a sterilized filter paper disc with the selected sample with concentration of $20 \mathrm{mg} / \mathrm{mL}$. Then, it was placed on a plate containing solid bacterial medium (nutrient agar both) or fungal medium (Dox's medium) to be seeded with the spore suspension of the tested organism. After inoculation, the diameter of the clear zone of inhibition surrounding the sample was taken as a measure of the inhabitation power against the particular tested organism [26-29]. The selected samples were screened against 2 bacterial Grampositive; Bacillus subtilis and Staphylococcus aureus; and 2 bacterial Gram-negative; Pseudomonas aeruginosa and Escherichia coli. Antifungal activity was tested against Aspergillus flavus, Aspergillus niger, Candida albicans and Candida Parapsilosis. The recorded results were
compared with Tetracycline and Amphotricine-B, respectively as standared antibacterial and antifungal agents. All the tested samples showed activity against the four bacterial strains, in $25-55 \%$ and activity against Candida albicans and Candida Parapsilosis, in (60-75\%). Whilst, the activity against Aspergillus niger was only shown by the samples having the 2,4-dioxy- structure (class 3), besides 1e and 7c of other classes, in (68-87\%). In general, compound $\mathbf{3 c}$ was the most effective sample and it was the only one that displayed activity against Aspergillus flavus in 64%.

EXPERIMENTAL

All melting points are uncorrected. IR spectra were recorded on Perkin Elmer 1600 FT.IR spectrophotometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were measured on Varian Gemini 200 MHz instrument; chemical shifts (δ) are reported in ppm downfield from (TMS). Mass spectra were recorded on a Shimadzu GC-MS-QP 1000X spectrometer operating at 70 eV . Chromatography was carried out with Silica gel S 0.63-0.1 mm Riedel-de-Haen on a column with $1=17 \mathrm{~cm}, \phi=1.7 \mathrm{~cm}$. dimensions. Thin layer chromatography was performed on Merck Kieselgel $60 \mathrm{~F}_{254}$ aluminum packed plates. Light petroleum is referred to the fraction b.p: ($60-80^{\circ} \mathrm{C}$).
Synthesis of 2-(Phenyl)/imino-3-(un)/substituted-5-(2-aryl-2-oxoethyl)-4-oxo-1,3-thiazolidines 1a-l (1g-i Method I); An acetic acid $(50 \mathrm{~mL})$ solution containing (5.0 mmol) of each of phenyl- (0.67 g), 1,3-diphenyl- (1.14 g), 1-methyl-3-phenyl$(0.88 \mathrm{~g})$ and/or thiourea $(0.38 \mathrm{~g})$, was added to $(5.0 \mathrm{mmol})$ of the required 3-benzoyl- (0.88 g), 3-(4-bromobenzoyl)- (1.27 g) or 3 -(4-chlorobenzoyl)-2-propenoic acid (1.0 g). The whole mixture was refluxed either for an hour or till a sudden precipitation of the crude $\mathbf{1 j} \mathbf{-}$. The solution of $\mathbf{1 a - i}$ was concentrated (20 mL) and left to cool. The solid precipitated was filtered off, dried and recrystallized from the proper solvent to afford 1a-l.
2-Phenylimino-5-(2-phenyl-2-oxoethyl)-4-oxo-1,3-thiazolidine (1a). 2.8 g (85.3%); mp 215-217 ${ }^{\circ}$ (acetic acid). ir: $v 3179$, 3141 (N-H, hetero, exo), 3035, 3006 (=CH), 2904 (C-H), 1684, $1660(\mathrm{C}=\mathrm{O}$, aroyl and hetero ring $), 1617(\mathrm{C}=\mathrm{N}), 760,690 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ nmr: $\delta 11.32$ (brs, $1 \mathrm{H}, \mathrm{NH}$), 7.08- 8.11 (four deformed m, $10 \mathrm{H}_{\text {arom }}$), 4.65-4.63 (complicated $\mathrm{m}, 1 \mathrm{H}_{\mathrm{A}}$), 4.18-4.01 (deformed $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{M}}, \mathrm{H}_{\mathrm{x}}$) ; ms: m/z 310 (79.0), 205 (100), 119 (31), 105 (54.8), 77 (77.1). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (310): C, $65.8 ; \mathrm{H}$, 4.51; N, 9.03. Found: C, 65.82; H, 4.48; N, 9.1.

2-Phenylimino-5-[2-(4-bromophenyl)-2-oxoethyl]-4-oxo-1,3thiazolidine (1b). 3.5 g (87.5%); mp 241-243 ${ }^{\circ}$ (acetic acid). ir: v 3266, 3207, 3412 (N-H), 3080, 3000 (=CH), 2924, 2860 (C-H), 1668 br (C=O, aroyl and hetero ring), $1638(\mathrm{C}=\mathrm{N}), 818$, $750,690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 11.99,11.25$ (brs, 2H, CONH, PhNH), 7.0-7.93 (four deformed $\mathrm{m} .9 \mathrm{H}_{\text {arom }}$), 4.56-4.53 (complicated m . $1 \mathrm{H}_{\mathrm{A}}$), 4.08-3.97, 3.75-3.53 (two deformed m. $2 \mathrm{H}, \mathrm{H}_{\mathrm{M}}, \mathrm{H}_{\mathrm{x}}$); ms: $\mathrm{m} / \mathrm{z} 388$ (20.4), 205 (100), 183 (28.1), 77(33.1). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$ (388): C, 52.72; H, 3.35; N, 7.21. Found: C, 52.70; H, 3.33; N, 7.11.

2-Phenylimino-5-[2-(4-chlorophenyl)-2-oxoethyl]-4-oxo-1,3-thiazolidine (1c). 3.2 g (80.4%); mp 233-235 ${ }^{\circ}$ (acetic acid). ir: v 3262, 3205,3142 (N-H), 3030-3000 (=CH), 2913-2858 (CH), $1676 \mathrm{br}(\mathrm{C}=\mathrm{O}$, aroyl and hetero ring $), 1629(\mathrm{C}=\mathrm{N}), 820,750$, $700 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 11.90,11.15$ (brs, 2H, CONH, PhNH), 6.988.01 (five deformed $\mathrm{m}, 9 \mathrm{H}_{\text {arom }}$), 4.53- 4.50 (complicated m, $1 \mathrm{H}_{\mathrm{A}}$), 4.05-3.94, 3.71-3.62 (two deformed m. $2 \mathrm{H}, \mathrm{H}_{\mathrm{M}}, \mathrm{H}_{\mathrm{X}}$); ms: m/z 344 (54.7), 205 (100) 139 (39.3), 118 (16.6), 77(22.6). .Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ (344.5): C, $59.21 ; \mathrm{H}, 3.77$; N , 8.13. Found: C, 59.19 ; H, 3.78 ; N, 8.14.

2-Phenylimino-3-phenyl-5-(2-phenyl-2-oxoethyl)-4-oxo-1,3thiazolidine ($\mathbf{1 d}$). 1.62 g (84.0%); mp 138-140 ${ }^{\circ}$ (light petroleum /chloroform). ir: v 3054, 3031 (=CH), 2919 (C-H), 1723, 1672 ($\mathrm{C}=\mathrm{O}$, aroyl and hetero ring), $1634(\mathrm{C}=\mathrm{N}), 768,691 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ $\mathrm{nmr}: \delta 7.96\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.8 \mathrm{~Hz}\right), 7.45-7.62\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$, 7.29 (apt., $2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.6 \mathrm{~Hz}$), 7.68 (apt., $1 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.6$ $\mathrm{Hz}), 6.92\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.8 \mathrm{~Hz}\right), 4.64\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{AX}}=10.6\right.$, $\left.\mathrm{J}_{\mathrm{AM}}=2.8 \mathrm{~Hz}\right), 4.14\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.4, \mathrm{~J}_{\mathrm{AM}}=2.8 \mathrm{~Hz}\right), 3.62$ $\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{X}}, \mathrm{J}_{\mathrm{MX}}=18.4, \mathrm{~J}_{\mathrm{AX}}=10.6 \mathrm{~Hz}\right.$); ms: m/z. 386 (56.7), 105 (40), 281 (100), 77 (75.7). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (386): C, 71.5; H, 4.66; N, 7.25. Found: C, 71.48; H, 4.62; N, 7.31.

2-Phenylimino-3-phenyl-5-[2-(4-bromophenyl)-2-oxoethyl]-4-oxo-1,3-thiazolidine (1e). $2.07 \mathrm{~g}\left(89.6 \%\right.$); mp 169-171 ${ }^{\circ}$ (light petroleum/chloroform). ir: v 3059 (=CH), 2917 (C-H), 1718, $1685(\mathrm{C}=\mathrm{O}$, aroyl and hetero ring), $1631(\mathrm{C}=\mathrm{N}), 817,766,693$ cm^{-1}. ${ }^{1} \mathrm{H}$ nmr: $\delta 7.81,7.63$ each ($\mathrm{d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.8 \mathrm{~Hz}$), 7.54 $\left(\mathrm{d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.8 \mathrm{~Hz}\right.$), 7.43-7.48 (m, $3 \mathrm{H}, \mathrm{H}_{\text {arom }}$), 7.29 (apt., $2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.8 \mathrm{~Hz}$), 7.1 (apt., $1 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.4 \mathrm{~Hz}$), $6.92(\mathrm{dd}$, $\left.2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.2,1.4 \mathrm{~Hz}\right), 4.62\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{Ax}}=10.2, \mathrm{~J}_{\mathrm{AM}}=\right.$ $2.8 \mathrm{~Hz}), 4.09\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.7, \mathrm{~J}_{\mathrm{AM}}=2.8 \mathrm{~Hz}\right), 3.58(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{H}_{\mathrm{X}}, \mathrm{J}_{\mathrm{MX}}=18.7, \mathrm{~J}_{\mathrm{AX}}=10.2 \mathrm{~Hz}$;); ms: m/z. 464 (25.3), 282 (100), 183 (15.9), 77 (33.1). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$ (464): C, 59.48; H, 3.66; N, 6.03. Found: C, 59.42; H, 3.68; N, 6.02 .

2-Phenylimino-3-phenyl-5-[2-(4-chlorophenyl)-2-oxoethyl]-4-oxo-1,3-thiazolidine (1f). $1.85 \mathrm{~g}(88.4 \%)$; mp 168-169 ${ }^{\circ}$ (light petroleum/chloroform). ir: v 3059 (=CH), 2954, 2919 ($\mathrm{C}-\mathrm{H}$) , 1719, $1686(\mathrm{C}=\mathrm{O}$, aroyl and hetero ring), 1634 $(\mathrm{C}=\mathrm{N}), 818,766,693 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 7.88\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=\right.$ $8.6 \mathrm{~Hz}), 7.56\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.6 \mathrm{~Hz}\right), 7.41-7.52(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{H}_{\text {arom }}$), 7.27 (apt., $2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.8 \mathrm{~Hz}$), 7.09 (apt., $1 \mathrm{H}, \mathrm{H}_{\text {arom }}$, $\mathrm{J}=7.6 \mathrm{~Hz}), 6.91\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.6 \mathrm{~Hz}\right), 4.62\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{A}}\right.$, $\left.\mathrm{J}_{\mathrm{AX}}=10.0, \mathrm{~J}_{\mathrm{AM}}=2.8 \mathrm{~Hz}\right), 4.09\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.4, \mathrm{~J}_{\mathrm{AM}}=\right.$ $2.8 \mathrm{~Hz}), 3.58\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{X}}, \mathrm{J}_{\mathrm{MX}}=18.4, \mathrm{~J}_{\mathrm{AX}}=10.0 \mathrm{~Hz}\right) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}$. 420 (45.4),281 (100) 139 (29.8), 77 (25.1). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ (420.5): C, 65.63; H, 4.04; N, 6.66. Found: C, 65.66; H, 4.11; N, 6.71 .

2-Phenylimino-3-methyl-5-(2-phenyl-2-oxoethyl)-4-oxo-1,3-thiazolidine (1g). 1.43 g (87.7%); $\mathrm{mp} 67-70^{\circ}$ (light petroleum/chloroform). ir: v 3058,3027 (=CH), 2924 (C-H), 1716, 1674 ($\mathrm{C}=\mathrm{O}$, aroyl and hetero ring), $1639(\mathrm{C}=\mathrm{N}), 761,688$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 7.92\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.0 \mathrm{~Hz}\right), 7.39-7.60(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{H}_{\text {arom }}$), 7.33 (apt., $2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.4 \mathrm{~Hz}$), 7.116 (apt., $1 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}$ $=7.4 \mathrm{~Hz}), 6.96\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.4 \mathrm{~Hz}\right), 4.49\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{AX}}=\right.$ $\left.11.0, \mathrm{~J}_{\mathrm{AM}}=3.0 \mathrm{~Hz}\right), 4.11\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.7, \mathrm{~J}_{\mathrm{AM}}=3.0 \mathrm{~Hz}\right)$, $3.44\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{X}}, \mathrm{J}_{\mathrm{MX}}=18.7, \mathrm{~J}_{\mathrm{AM}}=11.0 \mathrm{~Hz}\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; $\mathrm{ms}: \mathrm{m} / \mathrm{z} .324$ (100), 105 (2.48), 219 (40.6), 77 (6.83). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (324): C, 66.66; H, 4.93; N, 8.64. Found: C, 66.63; H, 4.91; N, 8.71.

2-Phenylimino-3-methyl-5-[2-(4-bromophenyl)-2-oxoethyl]-4-oxo-1,3-thiazoildine ($\mathbf{1 h}$). $1.77 \mathrm{~g}\left(88.0 \%\right.$); mp 141-143 ${ }^{\circ}$ (light petroleum/chloroform). ir: v 3070, 3025 (=CH), 2923 (C-H), 1715, $1674\left(\mathrm{C}=\mathrm{O}\right.$, aroyl and hetero ring), $1639(\mathrm{C}=\mathrm{N}), 826 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H} \mathrm{nmr}: \delta 7.79,7.61$ each (d, $2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.0 \mathrm{~Hz}$), 7.32 (apt., $2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.2 \mathrm{~Hz}$), 7.14 (apt., $1 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.2 \mathrm{~Hz}$), 6.957 $\left(\mathrm{d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.2 \mathrm{~Hz}\right), 4.47\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{AX}}=11.0, \mathrm{~J}_{\mathrm{AM}}=2.6\right.$ $\mathrm{Hz}), 4.05\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.6, \mathrm{~J}_{\mathrm{AM}}=2.6 \mathrm{~Hz}\right), 3.39\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{X}}\right.$, $\left.\mathrm{J}_{\mathrm{MX}}=18.6, \mathrm{~J}_{\mathrm{AX}}=11.0 \mathrm{~Hz}\right), 3.362\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} .402$ (28.9) 219 (100)183 (3.27). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$ (402): C, $53.73 ;$ H, 3.73 ; N, 6.96 . Found: C, $53.69 ;$ H, 3.72 ; N, 6.98 .

2-Phenylimino-3-methyl-5-[2-(4-chlorophenyl)-2-oxoethyl]-4-oxo-1,3-thiazolidine (1i). 1.6 g (89.1% Method I), 0.26 g (26.1% Method II); mp 128-130 ${ }^{\circ}$ (light petroleum/ chloroform). ir: v 3065, 3024 (=CH), 2924 (C-H), 1716, 1674 (C=O, aroyl and hetero ring), $1642(\mathrm{C}=\mathrm{N}), 831,765,694 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ nmr: δ $7.86\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.8 \mathrm{~Hz}\right), 7.45\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.6 \mathrm{~Hz}\right)$, 7.11 (apt., $2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.2 \mathrm{~Hz}$), $6.95\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7 . .2 \mathrm{~Hz}\right.$), 6.84 (apt., $1 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.2 \mathrm{~Hz}$), $4.47\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{AX}}=10.8, \mathrm{~J}_{\mathrm{AM}}\right.$ $=2.8 \mathrm{~Hz}), 4.05\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.6, \mathrm{~J}_{\mathrm{AM}}=2.8 \mathrm{~Hz}\right), 3.39(\mathrm{dd}$, $\left.1 \mathrm{H}_{\mathrm{X}}, \mathrm{J}_{\mathrm{MX}}=18.6, \mathrm{~J}_{\mathrm{AX}}=10.8 \mathrm{~Hz}\right), 3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}$. 358 (46.00), 219 (100), 111 (18.2), 139 (20.10). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ (358.5): C, $60.25 ; \mathrm{H}, 4.81 ; \mathrm{N}, 7.81$. Found: C, 60.23; H, 4.79; N, 7.8.

2-Imino-5-(2-phenyl-2-oxoethyl)-4-oxo-1,3-thiazolidine (1j). $1.03 \mathrm{~g}(87.4 \%)$; m.p. $>300^{\circ} \mathrm{C}$ (DMF/ EtOH). ir: v 3194 br (N$\mathrm{H}), 3060-2940 \mathrm{br}(=\mathrm{CH}, \mathrm{C}-\mathrm{H}), 1677 \mathrm{br}(\mathrm{C}=\mathrm{O}$, aroyl and hetero ring), $761,684 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ nmr: $\delta 9.10$ (brs., $1 \mathrm{H}, \mathrm{NH}_{\text {hetero }}$), 8.91 (s , $\left.1 \mathrm{H}, \mathrm{NH}_{\text {imino }}\right), 8.08\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {aroyl }}, \mathrm{J}=7.6 \mathrm{~Hz}\right), 7.77$ (apt., 1 H , $\mathrm{H}_{\text {arom }}, \mathrm{J}=7.2 \mathrm{~Hz}$), 7.64 (apt., $2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.2 \mathrm{~Hz}$), $4.52(\mathrm{dd}$, $\left.1 \mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{AX}}=10.6, \mathrm{~J}_{\mathrm{AM}}=2.8 \mathrm{~Hz}\right), 4.06\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.6, \mathrm{~J}_{\mathrm{AM}}=\right.$ $2.8 \mathrm{~Hz}), 3.56\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{X}}, \mathrm{J}_{\mathrm{Mx}}=18.6, \mathrm{~J}_{\mathrm{AX}}=10.6 \mathrm{~Hz}\right) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} .234$ (18.9), 129 (100),105 (74.8), 77 (80.8). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (234): C, 56.41; H, 4.27; N, 11.96. Found: C, 56.38; H, 4.21; N, 11.93.

2-Imino-5-[2-(4-bromophenyl)-2-oxoethyl]-4-oxo-1,3-thiazolidine ($\mathbf{1 k}$). 1.44 g (92.3%); $\mathrm{mp}>300^{\circ}$ (DMF/ EtOH). ir: v $3230 \mathrm{br}(\mathrm{N}-\mathrm{H}), 3023 \mathrm{br}(=\mathrm{CH}), 2930 \mathrm{br}(\mathrm{C}-\mathrm{H}), 1671 \mathrm{br}(\mathrm{C}=\mathrm{O}$, aroyl and hetero ring), $821 \mathrm{~cm}^{-1} .^{1} \mathrm{H} \mathrm{nmr}$: $\delta 9.09$ (brs., 1 H , $\mathrm{NH}_{\text {hetero }}$), $8.78\left(\right.$ brs, $\left.1 \mathrm{H}, \mathrm{NH}_{\text {imino }}\right), 7.93\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.6 \mathrm{~Hz}\right)$, $7.76\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.4 \mathrm{~Hz}\right), 4.42\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{AX}}=10.6, \mathrm{~J}_{\mathrm{AM}}=\right.$ $2.6 \mathrm{~Hz}), 3.95\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.4, \mathrm{~J}_{\mathrm{AM}}=2.6 \mathrm{~Hz}\right), 3.49\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{X}}\right.$, $\left.\mathrm{J}_{\mathrm{MX}}=18.4, \mathrm{~J}_{\mathrm{AX}}=10.6 \mathrm{~Hz}\right) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} .312$ (8.30), 129 (100), 183 (21.60). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$ (312): C, 42.3; H, 2.88; N, 8.97. Found: C, $42.23 ; \mathrm{H}, 2.81 ; \mathrm{N}, 8.98$.
2-Imino-5-[2-(4-chlorophenyl)-2-oxoethyl]-4-oxo-1,3-thiazolidine (11). 1.23 g (92.7%); $\mathrm{mp}>300^{\circ}$ (DMF/ EtOH). ir: v 3217 br (N-H), 3060-2940 br (=CH, C-H), 1672 br (C=O, aroyl and hetero ring), $826 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 9.95\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{\text {hetero }}\right)$), 9.10
(brs., $1 \mathrm{H}, \mathrm{NH}_{\text {imino }}$), 8.08 (d, 2H, $\mathrm{H}_{\text {arom }}, \mathrm{J}=8.4 \mathrm{~Hz}$), $7.69(\mathrm{~d}, 2 \mathrm{H}$, $\left.\mathrm{H}_{\text {arom }}, \mathrm{J}=8.4 \mathrm{~Hz}\right), 4.510\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{AX}}=10.6, \mathrm{~J}_{\mathrm{AM}}=3.0 \mathrm{~Hz}\right)$, $4.04\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.8, \mathrm{~J}_{\mathrm{AM}}=3.0 \mathrm{~Hz}\right), 3.57\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{X}}, \mathrm{J}_{\mathrm{MX}}=\right.$ $\left.18.8, \mathrm{~J}_{\mathrm{AX}}=10.6 \mathrm{~Hz}\right) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} .268$ (12.10), 219 (100), 139 (38.50). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ (268.5): C, 49.16; H, 3.35 ; N, 10.43. Found: C, 49.22 ; H, 3.31 ; N, 10.46.

Synthesis of 2- N -methylanilino-5-(2-aryl-2-oxoethyl)-4-oxo-1,3-thiazolines 2a-c (Method I): A solution of acetic acid $(50 \mathrm{~mL}$) containing 1 -methyl-1-phenylthiourea ($0.83 \mathrm{gm}, 5.0$ mmol) was refluxed for 1 h with (5.0 mmol) of 3-benzoyl- (0.88 gm), 3-(4-bromobenzoyl)- (1.27 gm) or 3-(4-chlorobenzoyl)-2propenoic acid (1.0 gm). The solution was concentrated (20 mL) and worked out as above to give 2a-c.
Synthesis of 1g-i and 2a-c (Method II): To a cold solution of ethanol (15 mL) containing $\mathrm{KOH}(0.17 \mathrm{~g}, 3 \mathrm{mmol}), \mathbf{1 a}$, b and/or $\mathbf{c}(3 \mathrm{mmol})$ was added. The mixture was stirred (20 min) in an ice bath, then treated with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4}(0.5 \mathrm{~mL})$. The stirring was continued (20 min). The reaction mixture was poured into cold water (25 mL), extracted with two portions of chloroform (50 mL). The organic layers were combined together, dried (CaCl_{2} anhydrous) and concentrated (1 mL). The residue was chromatographed on a column silica gel with light petroleum/ ethylacetate mixture first by ($80 / 20 \mathrm{v} / \mathrm{v}$) to afford $\mathbf{1 g}$-i then with ($50 / 50 \mathrm{v} / \mathrm{v}$) to give 2a-c.

Compounds $\mathbf{1 g - i}$ were matched (mp , admixing mp) with the respective sample previously obtained by (Method I).
2- N -Methylanilino-5-(2-phenyl-2-oxoethyl)-4-oxo-1,3-thiazoline (2a) 1.1 gm (67.5% Method I); 0.50 gm (51.3% Method II); mp 180-182 ${ }^{\circ}$ (Light petroleum/ chloroform). ir: $v 3070 \mathrm{br}$ (=CH), 2918 br (C-H), 1695 (C=O, aroyl and hetero ring), 750 cm^{-1}. ${ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 7.92\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=3.5,1.6 \mathrm{~Hz}\right), 7.29-7.62$ $\left(\mathrm{m}, 8 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 4.49\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{AX}}=11.8, \mathrm{~J}_{\mathrm{AM}}=2.8 \mathrm{~Hz}\right), 4.19$ $\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{M}}, J_{\mathrm{MX}}=18.6, \mathrm{~J}_{\mathrm{AM}}=2.8 \mathrm{~Hz}\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.31(\mathrm{dd}$, $1 \mathrm{H}_{\mathrm{X}}, \mathrm{J}_{\mathrm{MX}}=18.6, \mathrm{~J}_{\mathrm{AX}}=11.8 \mathrm{~Hz}$) ; ms: m/z. 324 (3), 219 (18), 133 (50.75), 155 (35.5) 77 (100). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (324): C, 66.66; H, 4.93; N, 8.64. Found: C, 66.64; H, 4.91; N, 8.66.

2-N-Methylanilino-5-[2-(4-bromophenyl)-2-oxoethyl]-4-oxo-1,3-thiazoline (2b). 1.4 g (69.6% Method I), $0.63 \mathrm{~g}(52.6 \%$ Method II); mp 140-142 (Light petroleum/ chloroform). ir: v $3060(=\mathrm{CH}), 2918$ (C-H), 1705, 1676 (C=O, aryl and hetero ring), $1620(\mathrm{C}=\mathrm{N}), 816 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 7.78\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=\right.$ $8.6 \mathrm{~Hz}), 7.59\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.6 \mathrm{~Hz}\right), 7.44-7.48(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{H}_{\text {arom }}\right), 7.30\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=5.0,2.0 \mathrm{~Hz}\right), 4.47\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{Ax}}=\right.$ $\left.11.6, \mathrm{~J}_{\mathrm{AM}}=3.0 \mathrm{~Hz}\right), 4.13\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.8, \mathrm{~J}_{\mathrm{AM}}=3.0 \mathrm{~Hz}\right)$, $3.659\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.26\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{X}}, \mathrm{J}_{\mathrm{Mx}}=18.8, \mathrm{~J}_{\mathrm{Ax}}=11.6 \mathrm{~Hz}\right)$; ms: m/z. 402 (31), 219 (100). 183 (31.95) 77 (67.16). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$ (402): C, 53.73; H, 3.73; N, 6.96. Found: C, 53.72; H, 3.63; N, 6.99.

2-N-Methylanilino-5-[2-(4-chlorophenyl)-2-oxoethyl]-4-oxo-1,3-thiazoline (2c). 1.4 g (61.3% Method I), 0.61 g (57.0% Method II); mp 151-153 ${ }^{\circ}$ (Light petroleum/ chloroform); ir: v 3063 (=CH), 2924 (C-H), 1687 br (C=O, aryl and hetero ring), $813 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 7.86(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.413-7.484(\mathrm{~m}$, $\left.5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 3.32\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=5.40,2.4 \mathrm{~Hz}\right), 4.48\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{A}}\right.$, $\left.\mathrm{J}_{\mathrm{AX}}=11.6, \mathrm{~J}_{\mathrm{AM}}=2.8 \mathrm{~Hz}\right), 4.15\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.8, \mathrm{~J}_{\mathrm{MX}}=2.8\right.$ Hz), 3.66 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), $3.27\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{X}}, \mathrm{J}_{\mathrm{MX}}=18.8, \mathrm{~J}_{\mathrm{AX}}=11.6 \mathrm{~Hz}\right.$); ms: m/z. 358 (5.17), 219 (91.87), 139 (82), 111 (100). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ (358.5): C, $60.25 ; \mathrm{H}, 4.2 ; \mathrm{N}, 7.81$. Found: C, 60.26; H, 4.21; N, 7.83.

Synthesis of 3-un/substituted-5-(2-aryl-2-oxoethyl)-2,4-dioxo-1,3-thiazolidines 3a-i. A solution of glacial acetic acid
(25 mL) containing $\mathbf{1 a - k}$ or $\mathbf{1} 0.5 \mathrm{~g}(1.0-2.5 \mathrm{mmol})$ was refluxed with conc. $\mathrm{HCl}(2 \mathrm{~mL})$ for 10 hours (5 hours for $\mathbf{1 j} \mathbf{- l}$). The solution was concentrated and poured into ice-cold water (30 $\mathrm{mL})$. The solid separated was collected by filtration, washed, dried and crystallized from the proper solvent to give:

5-(2-Phenyl-2-oxoethyl)-2,4-dioxo-1,3-thiazolidine (3a). (from 1a or $\mathbf{1 j}$) $0.46 \mathrm{~g}(90 \%) ; \mathrm{mp} 153-155^{\circ}$ (toluene); ir: v 3167 (N-H), 3053 (=CH), 2789, 2959 (C-H), 1753 (C=O), 1677 br ($\mathrm{C}=\mathrm{O}$, aroyl and hetero ring), $772,685 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ nmr: $\delta 7.96$ (d, $2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.8 \mathrm{~Hz}$), 7.64 (ap.t., $1 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.6 \mathrm{~Hz}$), 7.506 (apt., 2H, $\mathrm{H}_{\text {arom }}$, J = 7.6 Hz), $7.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.68\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right.$, $\left.\mathrm{J}_{\mathrm{AX}}=10.4, \mathrm{~J}_{\mathrm{AM}}=3.0 \mathrm{~Hz}\right), 4.69\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.6, \mathrm{~J}_{\mathrm{AM}}=\right.$ $3.0 \mathrm{~Hz}), 3.594\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{X}}, \mathrm{J}_{\mathrm{MX}}=18.6, \mathrm{~J}_{\mathrm{Ax}}=10.4 \mathrm{~Hz}\right) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}$. 235 (21.9), 130 (8.20), 105 (100), 77 (59.2). .Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{~S}$ (235): C, 56.17; H, 3.84; N, 5.95. Found: C, 56.13; H, 3.79; N, 5.96.

5-[2-(4-Bromophenyl)-2-oxoethyl]-2,4-dioxo-1,3-thiazolidine (3b) (from 1b or 1k). 0.47 g (95.5%); $\mathrm{mp} 184-185^{\circ}$ (toluene); ir: v 3173 (N-H), 3066 (=CH), 2950, 2799 (C-H), $1760(\mathrm{C}=\mathrm{O}), 1689 \mathrm{br}\left(\mathrm{C}=\mathrm{O}\right.$, aroyl and hetero ring), $816 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ nmr: $\delta 7.82,7.65$ each ($\mathrm{d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.6 \mathrm{~Hz}$), $7.36(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}) .4 .67\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{AX}}=10.4, \mathrm{~J}_{\mathrm{AM}}=3.0 \mathrm{~Hz}\right), 4.04(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.6, \mathrm{~J}_{\mathrm{AM}}=3.0 \mathrm{~Hz}$), $3.54\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{X}}, \mathrm{J}_{\mathrm{MX}}=18.6, \mathrm{~J}_{\mathrm{AX}}\right.$ $=10.4 \mathrm{~Hz}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} .313$ (29.40)130 (45), 183 (100)155 (17.50). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{BrNO}_{3} \mathrm{~S}$ (313): C, 42.17; H, 2.55; N, 4.47. Found: C, 42.14; H, 2.55; N, 4.46.

5-[2-(4-Chlorophenyl)-2-oxoethyl]-2,4-dioxo-1,3-thiazolid-

 ine (3c) (from 1c or 11). $0.46 \mathrm{~g}(92 \%)$; mp 161-163 ${ }^{\circ}$ (toluene); ir: v 3168 (N-H), 3067 (=CH), 2950, 2799 (C-H), 1756 (C=O), $1690 \mathrm{br}\left(\mathrm{C}=\mathrm{O}\right.$, aroyl and hetero ring), $822 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 8.6$ (br, NH), 7.9, 7.48 each (d, 2H, $\mathrm{H}_{\text {arom }}, \mathrm{J}=8.4 \mathrm{~Hz}$), $4.66(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{AX}}=10.2, \mathrm{~J}_{\mathrm{AM}}=3.0 \mathrm{~Hz}\right), 4.04\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.8, \mathrm{~J}_{\mathrm{AM}}\right.$ $=3.0 \mathrm{~Hz}), 3.55\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{X}}, \mathrm{J}_{\mathrm{MX}}=18.4, \mathrm{~J}_{\mathrm{AX}}=10.2 \mathrm{~Hz}\right) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}$. 269 (27),130 (21), 139 (100), 111 (41). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClNO}_{3} \mathrm{~S}$ (269.5): C, $48.97 ; \mathrm{H}, 2.97$; N, 5.19. Found: C, 48.93; H, 2.96; N, 5.183-Phenyl-5-(2-phenyl-2-oxoethyl)-2,4-dioxo-1,3-thiazolidine (3d) (from 1d). 9.1 g (91%); mp 117-118 ${ }^{\circ}$ (EtOH); ir: v 3067 (=CH), 2917 (C-H), 1735 (C=O), 1674 br (C=O, aroyl and hetero ring), $754,688 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 7.98$ (d, $2 \mathrm{H}, \mathrm{H}, \mathrm{J}=7.8$ $\mathrm{Hz}), 7.64$ (apt., $1 \mathrm{H}, \mathrm{H}_{\text {arom }}$, J = 7.2 Hz), 7.45-7.57 (m, $5 \mathrm{H}, \mathrm{H}_{\text {arom }}$), $7.336\left(\mathrm{dd}, 2 \mathrm{H}_{\text {arom }}, \mathrm{J}=6.7,2.0 \mathrm{~Hz}\right), 4.742\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{AX}}=9.9\right.$, $\left.\mathrm{J}_{\mathrm{AM}}=3.0 \mathrm{~Hz}\right), 4.15\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.7, \mathrm{~J}_{\mathrm{AM}}=3.0 \mathrm{~Hz}\right), 3.70$ (dd, $1 \mathrm{H}, \mathrm{H}_{\mathrm{X}}, \mathrm{J}_{\mathrm{MX}}=18.7, \mathrm{~J}_{\mathrm{AX}}=9.8 \mathrm{~Hz}$); ms: m/z. 311 (34), 206 (59), 105 (100), 77 (67). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$ (311): C, 65.59 ; H, 4.18; N, 4.50. Found: C, 65.61; H, 4.20; N, 4.53.

3-Phenyl-5-[2-(4-bromophenyl)-2-oxoethyl]-2,4-dioxo-1,3thiazolidine (3e) (from 1e). 1.0 g (93.0%); mp 182-184 ${ }^{\circ}$ (EtOH); ir: v 3064 (=CH), 2943, 2909 (C-H), 1751 (C=O), 1678 br ($\mathrm{C}=\mathrm{O}$, aroyl and hetero ring), $816,750,689 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}$: δ $7.85,7.66$ each ($\mathrm{d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.6 \mathrm{~Hz}$), 7.45-7.57 (m, 3 H , $\left.\mathrm{H}_{\text {arom }}\right), 7.33\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.6 \mathrm{~Hz}\right), 4.73\left(\mathrm{dd}, 1 \mathrm{H}, 1 \mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{AX}}=\right.$ $\left.9.8, \mathrm{~J}_{\mathrm{AM}}=3.0 \mathrm{~Hz}\right), 4.10\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.6, \mathrm{~J}_{\mathrm{AM}}=3.0 \mathrm{~Hz}\right)$, $3.67\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{X}}, J_{\mathrm{Mx}}=18.6, \mathrm{~J}_{\mathrm{AX}}=9.8 \mathrm{~Hz}\right) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} .389(24)$, 206 (100), 183 (52), 155 (21). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{BrNO}_{3} \mathrm{~S}$ (389): C, 52.44; H, 3.08; N, 3.59. Found: C, 52.50; H, 3.11; N, 3.62 .

3-Phenyl-5-[4-(chlorophenyl)-2-oxoethyl]-2,4-dioxo-1,3-thiazolidine (3f) (from 1f). Yield: $1.8 \mathrm{~g}\left(92.0 \%\right.$); $\mathrm{mp} 180-182^{\circ}$ (EtOH); ir: v 3098, 3065 (=CH), 2943, 2911 (C-H), 1749 $(\mathrm{C}=\mathrm{O}), 1680 \mathrm{br}(\mathrm{C}=\mathrm{O}$, aroyl and hetero ring), 825, 751, 691 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 7.8,7.64$ each (d, $2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.8 \mathrm{~Hz}$), $7.30-$
$7.44\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 4.58\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{AX}}=10.6, \mathrm{~J}_{\mathrm{AM}}=3.0 \mathrm{~Hz}\right)$, $4.05\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.6, \mathrm{~J}_{\mathrm{AM}}=3.0 \mathrm{~Hz}\right), 3.42\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{X}}\right.$, $\left.\mathrm{J}_{\mathrm{MX}}=18.6, \mathrm{~J}_{\mathrm{AX}}=10.6 \mathrm{~Hz}\right) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} .345(35), 206(97) 139$ (100) 111 (46.80). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClNO}_{3} \mathrm{~S}$ (345.5): C, 59.04; H, 3.47; N, 4.05. Found: C, 59.10; H, 3.46; N, 4.12.

3-Methyl-5-(2-phenyl-2-oxoethyl)-2,4-dioxo-1,3-thiazolidine (3g) (from 1g). $0.41 \mathrm{~g}(82.0 \%)$; mp $85-87^{\circ}(\mathrm{EtOH})$; ir: v $3065(=\mathrm{CH}), 2961,2920(\mathrm{C}-\mathrm{H}), 1740(\mathrm{C}=\mathrm{O}), 1678$ br $(\mathrm{C}=\mathrm{O}$, aroyl and hetero ring), 686, $745 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 7.95(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{H}_{\text {arom }}, \mathrm{J}=7.2 \mathrm{~Hz}$), 4.63 (apt., $1 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.2 \mathrm{~Hz}$), 7.46 (apt., $\left.2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.2 \mathrm{~Hz}\right), 4.59\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{AX}}=10.6, \mathrm{~J}_{\mathrm{AM}}=2.8 \mathrm{~Hz}\right)$, $4.12\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.6, \mathrm{~J}_{\mathrm{AM}}=2.8 \mathrm{~Hz}\right), 3.51\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{X}}, \mathrm{J}_{\mathrm{MX}}=\right.$ $\left.18.6, \mathrm{~J}_{\mathrm{AX}}=10.6 \mathrm{~Hz}\right), 3.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ms: m/z. $249(100), 144$ (77.23), 105 (65.00), 77 (84.68). 235 (21.9)130 (8.20), 105 (100),77 (59.2). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$ (249): C, 57.83 ; H, 4.41; N, 5.62. Found: C, 57.81; H, 4.43; N, 5.61.

3-Methyl-5-[2-(4-bromophenyl)-2-oxoethyl]-2,4-dioxo-1,3thiazolidine (3h) (from 1h). 0.46 g (92.0%); mp 148-150 ${ }^{\circ}$ (EtOH); ir: v 3072, $3040(=\mathrm{CH}), 2983,2906(\mathrm{C}-\mathrm{H}), 1752$ $(\mathrm{C}=\mathrm{O}), 1675 \mathrm{br}\left(\mathrm{C}=\mathrm{O}\right.$, aroyl and hetero ring), $818 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 7.87\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.0 \mathrm{~Hz}\right), 7.46\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.2 \mathrm{~Hz}\right)$, $4.57\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{AX}}=10.6, \mathrm{~J}_{\mathrm{AM}}=3.0 \mathrm{~Hz}\right), 3.97\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=\right.$ $\left.18.4, \mathrm{~J}_{\mathrm{AM}}=3.0 \mathrm{~Hz}\right), 3.46\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{x}}, \mathrm{J}_{\mathrm{MX}}=18.4, \mathrm{~J}_{\mathrm{AX}}=10.6 \mathrm{~Hz}\right)$, 3.14 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ms: m/z. 327 (24.7), 206(100), 155 (21.2), 183 (52.50). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrNO}_{3} \mathrm{~S}$ (328): C, 43.93; H, 3.08 ; N, 4.27. Found: C, 43.96; H, 3.05; N, 4.31 .

3-Methyl-5-[2-(4-chlorophenyl)-2-oxoethyl]-2,4-dioxo-1,3thiazolidine (3i) (from 1i). 0.43 g (86.0%); mp 128-130 (EtOH). ir: v 3072, 3033 (=CH), 2946, 2906 (C-H), 1748 (C=O), $1678 \mathrm{br}\left(\mathrm{C}=\mathrm{O}\right.$, aroyl and hetero ring), $821 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 7.80$ $\left(\mathrm{d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.6 \mathrm{~Hz}\right), 7.64\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.6 \mathrm{~Hz}\right), 4.57$ $\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{AX}}=10.6, \mathrm{~J}_{\mathrm{AM}}=2.8 \mathrm{~Hz}\right), 4.06\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.4\right.$, $\left.\mathrm{J}_{\mathrm{AM}}=2.8 \mathrm{~Hz}\right), 3.46\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{X}}, \mathrm{J}_{\mathrm{MX}}=18.4, \mathrm{~J}_{\mathrm{AX}}=10.6 \mathrm{~Hz}\right), 3.16(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$) $\mathrm{ms}: \mathrm{m} / \mathrm{z} .283$ (31), 144 (87), 139 (100), 111(49.20). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClNO}_{3} \mathrm{~S}$ (283.5): C, $50.79 ; \mathrm{H}, 3.53 ; \mathrm{N}$, 4.94. Found: C, 50.77 ; H, 3.56; N, 4.93 .

Rearrangement of 1a-c, d and k into 1-phenyl-, 1,3-diphenyl-, and 5-(2-aryl-2-oxoethyl)-4-oxo-2-thioxoimidazolidines $4 \mathbf{a}-\mathbf{c}$, \mathbf{d} and \mathbf{k}. A solution of DMF (50 mL) containing $\mathbf{1 a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ or $\mathrm{k}(1.0 \mathrm{~g})$ was refluxed for $\mathbf{4 h}(10 \mathrm{~h}$ for $\mathbf{1 k})$. The solution was concentrated (5 mL) under vacuum and treated with 20 mL of ethanol (ethyl acetate for 1d). The separated solid from 1a-d was collected by filtration and recrystallized (toluene/light petroleum) to give 4a-d. The unchanged $\mathbf{1 k}$ was removed by filtration and the mother liquor was evaporated and diluted with ethanol. The crud product was collected by filtration and recrystallized (chloroform/light petroleum) to afford $\mathbf{4 k}$.

1-Phenyl-5-(2-phenyl-2-oxoethyl)-4-oxo-2-thioxoimidazolidine (4a). $0.28 \mathrm{~g}(93 \%)$; mp 226-228 ${ }^{\circ}$; ir: v 3237-3040 br (N-H, $=\mathrm{CH}), 2964(\mathrm{C}-\mathrm{H}), 1739,1681(\mathrm{C}=\mathrm{O}$, aroyl and hetero ring), $1248(\mathrm{C}=\mathrm{S}), 760,690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-d_{6}\right): \delta 11.72(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}), 7.60\left(\mathrm{~d}, 2 \mathrm{H}_{\text {arom, }} \mathrm{J}=8.0 \mathrm{~Hz}\right), 7.07-7.44\left(\mathrm{~m}, 8 \mathrm{H}_{\text {arom }}\right), 4.84-$ $4.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right), 3.21-3.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{M}}, \mathrm{H}_{\mathrm{X}}\right) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} .310$ (35), 205 (59), 77 (100). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (310): C, $65.80 ;$ H, 4.51 ; N, 9.03. Found: C, 65.78; H, 4.50; N, 9.00.

1-Phenyl-5-[2-(4-bromophenyl)-2-oxoethyl]-4-oxo-2-thioxoimidazolidine (4b). $1.10 \mathrm{~g}(95.0 \%)$; mp 247-249웅 ir: v 32263040 br ($\mathrm{N}-\mathrm{H},=\mathrm{CH}$), $2980(\mathrm{C}-\mathrm{H}), 1741,1681(\mathrm{C}=\mathrm{O}$, aroyl and hetero ring), $1225(\mathrm{C}=\mathrm{S}), 807,762,695 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta=12.0$ $(1 \mathrm{H}, \mathrm{NH}), 7.56,7.48$ each ($\mathrm{d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=6.6 \mathrm{~Hz}$), 7.20-7.33 $\left(\mathrm{m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.94\left(\right.$ apt., $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{AM}}=\mathrm{J}_{\mathrm{AX}}=4.4 \mathrm{~Hz}\right), 343(\mathrm{dd}$,
$\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.2, \mathrm{~J}_{\mathrm{AM}}=4.4 \mathrm{~Hz}\right), 3.30\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{X}}, \mathrm{J}_{\mathrm{MX}}=18.2\right.$, $\mathrm{J}_{\mathrm{AX}}=4.4 \mathrm{~Hz}$); ms: m/z. 388 (27), 205 (100), 77 (39). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$ (388): C, 52.57; H, 3.35; $\mathrm{N}, 7.21$. Found: C, $52.50 ; \mathrm{H}, 3.32$; N, 7.18

1-Phenyl-5-[2-(4-chlorophenyl)-2-oxoethyl]-4-oxo-2-thioxoimidazolidine (4c). $0.95 \mathrm{~g}(93.0 \%)$; mp 238-240 ; ir: 32293040 br $(\mathrm{N}-\mathrm{H},=\mathrm{CH}), 2928(\mathrm{C}-\mathrm{H}), 1740,1681(\mathrm{C}=\mathrm{O}$, aroyl and hetero ring), $1205(\mathrm{C}=\mathrm{S}), 809,760,695 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 12.23$ $(1 \mathrm{H}, \mathrm{NH}), 7.84,7.55$ each (d, $2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.6 \mathrm{~Hz}$), 7.39-7.28 $\left(\mathrm{m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.314\left(\right.$ apt., $\left.1 \mathrm{H}_{\mathrm{A}}, \mathrm{J}_{\mathrm{AM}}=\mathrm{J}_{\mathrm{AX}}=4.2 \mathrm{~Hz}\right), 3.66(\mathrm{dd}$, $\left.1 \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.8, \mathrm{~J}_{\mathrm{AM}}=4.2 \mathrm{~Hz}\right), 3.40\left(\mathrm{dd}, 1 \mathrm{H}_{\mathrm{X}}, \mathrm{J}_{\mathrm{MX}}=18.8, \mathrm{~J}_{\mathrm{AX}}=\right.$ 4.2 Hz); ms: m/z. 344 (7), 205 (100), 77 (48). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ (344.5): C, 59.21; H, 3.77; N, 8.12. Found: C, 59.22; H, 3.70; N, 8.15.

1,3-Diphenyl-5-(2-phenyl-2-oxoethyl)-4-oxo-2-thioxoimidazolidine (4d). 1.1 g (90 \%); mp 152-154 ${ }^{\circ}$; ir: v 3062 (= CH), 2918 ($\mathrm{C}-\mathrm{H}$), 1759, 1669 ($\mathrm{C}=\mathrm{O}$, aroyl and hetero ring), 1220 $(\mathrm{C}=\mathrm{S}), 753,691 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 7.82\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.4 \mathrm{~Hz}\right)$, $7.37-7.61\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) 4.98-5.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right), 3.68(\mathrm{dd}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{M}}, \mathrm{J}_{\mathrm{MX}}=18.6, \mathrm{~J}_{\mathrm{AM}}=3.9 \mathrm{~Hz}\right), 3.54\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{X}}, \mathrm{J}_{\mathrm{MX}}=\right.$ $18.6, \mathrm{~J}_{\mathrm{AX}}=3.6 \mathrm{~Hz}$); ms: m/z 386 (39), 281 (100), 77 (69). .Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (386): C, 71.5; H, 4.66; $\mathrm{N}, 7.25$. Found: C, 71.35; H, 4.60; N, 7.33.

5-[2-(4-Bromophenyl)-2-oxoethyl]-4-oxo-2-thioxoimidazolidine ($\mathbf{4 k}$). $0.10 \mathrm{~g}(10 \%)$; mp 206-208 ${ }^{\circ}$ (EtOH); ir: 3190 (br, NH), $3089(=\mathrm{CH}), 2574(\mathrm{~S}-\mathrm{H}), 1734,(\mathrm{C}=\mathrm{O}$, aroyl and hetero ring), $1680(\mathrm{C}=\mathrm{N}), 819 \mathrm{~cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 312$ (28), 129 (100), 183 (24). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$ (312): C, 42.3 ; $\mathrm{H}, 2.88$; N, 8.97. Found: C, $42.53 ; \mathrm{H}, 2.80 ; \mathrm{N}, 8.93$.

Synthesis of 1-phenyl and 1,3-diphenyl-5-(benzoyl-methylene)-4-oxo-2-thioxoimidazolidines 5a and 5d: (Method A): A solution of glacial acetic acid (10 mL) containing 1phenyl [18] ($0.38 \mathrm{~g}, 2 \mathrm{mmol}$) and/or 1,3-diphenyl-4-oxo-2thioxoimidazolidine [19] $(0.53 \mathrm{~g}, 2 \mathrm{mmol})$ was refluxed for 20 min with phenylglyoxal $(0.27 \mathrm{~g}, 2 \mathrm{mmol})$ and fused $\mathrm{CH}_{3} \mathrm{COONa}$ $(0.5 \mathrm{~g}, 6 \mathrm{mmol})$. The reaction mixtures were concentrated (3 mL), poured onto water (50 mL) and extracted twice with CHCl_{3} $(50 \mathrm{~mL})$. The organic solutions were combined, dried $\left(\mathrm{CaCl}_{2}\right.$ anhydrous) and evaporated. The residue was chromatographed silica gel- (diethyl ether/light petroleum $5: 1 \mathrm{v} / \mathrm{v}$) to give 5 a , b.
(Method B): A solution of glacial acetic acid (15 mL) containing $4 \mathbf{a}(0.3 \mathrm{~g}, 1 \mathrm{mmol})$ and/or $\mathbf{4 d}(0.38 \mathrm{~g}, 1 \mathrm{mmol})$ was treated with bromine $(0.5 \mathrm{~mL}, 1 \mathrm{mmol})$. The mixture was stirred for 10 min , and then warmed till HBr ceased to evolve. The reaction mixture of $\mathbf{4 a}$ was concentrated and the precipitated solid was collected by filtration dried, and reystallized from acetic acid to give $\mathbf{5 a}$. The reaction mixture of $\mathbf{4 d}$ was worked out as described in method A to afford $\mathbf{5 b}$.

1-Phenyl-5-(benzoylmethylene)-4-oxo-2-thioxoimidazolidine (5a). $0.28 \mathrm{~g}(36 \%$, method A$), 0.20 \mathrm{~g}(56 \%$, method B$)$; $\mathrm{mp} 154-156^{\circ} \mathrm{C}$ (light petroleum/ chloroform); ir: v 3238-3030 br $(\mathrm{N}-\mathrm{H},=\mathrm{CH}), 1739,1681(\mathrm{C}=\mathrm{O}$, aroyl and hetero ring), 1222 (C=S), 750, $690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 9.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) 7.05-7.628$ $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), E$-isomer (42\%): $7.9\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.8 \mathrm{~Hz}\right)$, $6.2(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), Z$-isomer $(58 \%), 7.07\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.8\right.$ $\mathrm{Hz}), 6.835(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH})$; ms: m/z. 308 (47.2), 105 (80.9) 77 (100). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (308): C, 66.22; H, 3.92; N, 9.08. Found: C, 66.26; H, 3.93; N, 9.12.

1,3-Diphenyl-5-(benzoylmethylene)-4-oxo-2-thioxoimidazolidine (5d). $0.28 \mathrm{~g}(36 \%$, method A), $0.20 \mathrm{~g}(56 \%$, method B); mp 155-157 ${ }^{\circ}$ (light petroleum/ chloroform); ir: v 3058 $(=\mathrm{CH}), 1749,1666(\mathrm{C}=\mathrm{O}$, aroyl and hetero ring $), 1230(\mathrm{C}=\mathrm{S})$,
$760,690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ nmr: $\delta 7.14-7.61\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), E$-isomer (29\%): 7.93 (d, 2H, Harom, J = 7.0 Hz), 6.12 (s, $1 \mathrm{H},=\mathrm{CH}$), Zisomer (71%) , $7,66\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.0 \mathrm{~Hz}\right), 6.85(\mathrm{~s}, 1 \mathrm{H}$, $=\mathrm{CH}$); ms: m/z. 384 (11), 105 (100), 77 (91). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (384): C, 71.87; H, 4.16; N, 7.29. Found: C, 71.82; $\mathrm{H}, 4.11$; N, 7.33 .

Synthesis of 5-aryl-2,3-dihydro-2-phenyliminothieno[2,3- d]thiazoles 6a-c. A mixture 1a, \mathbf{b} and/or $\mathbf{c}(0.5 \mathrm{~g} ; 1.5 \mathrm{mmol})$ and Lawesson's reagent [18] ($0.7 \mathrm{~g} ; 1.7 \mathrm{mmol}$) was refluxed in xylene/ dioxane solution ($50 \mathrm{~mL} ; 5 / 2 \mathrm{v} / \mathrm{v}$) for 4 h . The mixture was concentrated (15 mL), treated with light petroleum and left to cool. The product was collected by filtration, washed with hot water, dried and recrystallized from toluene - dioxane to afford 6a-c.

5-Phenyl-2,3-dihydro-2-phenyliminothieno[2,3- d]thiazole (6a) $0.4 \mathrm{~g}(80 \%)$; mp 200-202ㅇ; ir: v 3176 (=NH), 1565 (C=N), 1269 (C-N), 3055 (=CH), 693, $750 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 10.57$ (s, 1H, NH) 7.62-7.74 (m, 4H, $\mathrm{H}_{\text {arom }}$), $7.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6) 7.2565-7.469$ $\left(\mathrm{m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.02$ (apt., $1 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.0 \mathrm{~Hz}$); ms: m/z. 308 (100), 204 (6), 146 (2). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}_{2}$ (308): C, 66.23 ; H, 3.89; N, 9.09. Found: C, 66.26; H, 3.91; N, 9.12

5-(4-Bromophenyl)-2,3-dihydro-2-phenyliminothieno [2,3-d]thiazole (6b). $0.42 \mathrm{~g}(84 \%)$; mp $259-261^{\circ} \mathrm{C}$; ir: v 3176 (=NH), 3044 (=CH), 1563 (C=N), 1267 (C-N),698, 752, $811 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ nmr: $\delta 10.558(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6), 7.67\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right.$, $\mathrm{J}=7.2 \mathrm{~Hz}$), 7.57-7.58 (m, 4H, $\mathrm{H}_{\text {arom }}$), 7.36 (apt., $2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=$ 7.2 Hz), 7.11 (apt., $1 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=7.2 \mathrm{~Hz}$); ms: m/z. 387 (100), 386 (76), 282 (11), 224 (9). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{~S}_{2}$ (386): C, 52.85 ; H, 2.85; N, 7.25. Found: C, 52.84; H, 2.80; N, 7.29.
5-(4-Chlorophenyl)-2,3-dihydro-2-phenyliminothieno[2,3-d]thiazole (6c). $0.42 \mathrm{~g}(84 \%)$; mp 216-218웅 ir: v 3188 (=NH), 3044 (=CH), 1569 (C=N), 1272 (C-N), 693, 748, $810 \mathrm{~cm}^{-1}$; ms: m/z. 342 (100), 238 (12.9), 180 (3.62). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{~S}_{2}$ (342.5): C, 59.65; H, 3.21; N, 8.18. Found: C, 59.65; H, 3.22; N, 8.26.

Synthesis of 1-phenyl-5-aryl-2,3-dihydro-2-thioxothieno-[2,3-d]imidazoles 7a-c. A mixture 4a, b and/or $\mathbf{c}(0.5 \mathrm{gm} ; 1.5$ $\mathrm{mmol})$ and Lawesson's reagent $(0.7 \mathrm{gm} ; 1.7 \mathrm{mmol})$ was refluxed in xylene solution (50 mL) for 4 h . The reaction mixture was concentrated (30 mL). After cooling, the crude precipitate was collected by filtration, washed with water then with dilute methanol, dried and recrystallized from the proper solvent with charcoalization to give 7a-c.

1,5-Diphenyl-2,3-dihydro-2-thioxothieno[2,3-d]imidazole (7a). 0.41 g (82%); mp 236-238 ${ }^{\circ}$; ir: v 3065 (=CH), 2668 (SH), 682, $743 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ nmr: $\delta 11.65$ (brs, $1 \mathrm{H}, \mathrm{NH}$), 7.68 (d, 2 H , $\mathrm{H}_{\text {arom }}, \mathrm{J}=8.0 \mathrm{~Hz}$), 7.58 (apt., $2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{J}=8.0 \mathrm{~Hz}$), $7.46-7.54$, 7.26-7.37 each ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}_{\text {arom }}$), $6.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6)$; ms: m/z. 308 (100), 307 (25), 121 (28). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}_{2}$ (308): C, 66.23 ; H,3.89; N,9.09. Found:C,66.30;H,3.91; N, 9.10.

1-Phenyl-5-(4-bromophenyl)-2,3-dihydro-2-thioxothieno-[2,3-d]imidazole (7b). $0.37 \mathrm{~g}(74 \%) ; \mathrm{mp} 279-281^{\circ}$; ir: v 3065 (=CH), 2668 (S-H), 686, 733, $799 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 7.95$ (brs, 1 H , NH), 7.42-7.68 (m, 9H, Harom $)$, 7.36 (s, 1H, H-6); ms: m/z. 386 (93.6), 307 (5.4), 308 (2.5). .Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{~S}_{2}$ (386): C, 52.85 ; H, 2.85; N, 7.25. Found: C, 52.86; H, 2.80; N, 7.31.

1-Phenyl-5-(4-chlorophenyl)-2,3-dihydro-2-thioxothieno-[2,3-d]imidazole (7c). $0.4 \mathrm{~g}(80 \%)$; $\mathrm{mp} 222-224^{\circ}$; ir: v 3065 (=CH), 2668 (S-H), 686, $799 \mathrm{~cm}^{-1}$; ms: m/z. 342 (100) 307
(2.3), 265 (3). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{~S}_{2}$ (342.5): C, 59.65; H, 3.21; N, 8.18. Found: C, 59.67; H, 3.20; N, 8.27.

REFERENCES AND NOTES

[1] Singh, S. P.; Parmar, S. S.; Raman, K.; Stenberg, V. I., Chem. Rev. 1981, 175.
[2] Sharma, S. C., Bull. Chem. Soc. Jpn., 1967, 40, 2422.
[3] Schauer, P.; Likar, M.; Tisler, M.; Krbavcic, A.; Pollak, A., Path. Microbiol., 1965, 28, 382.
[4] Shyam, R.; Tiwari, I. C., Bull. Chem. Soc. Jpn., 1977, 50, 514.
[5] Litvinchuk, M. D., Farmakol. Toksikol., 1963, 26; Chem. Abstr., 1964, 60, 13671e.
[6] RamLa, M. M.; Omer, M. A.; Elkhamry, A. M.; El-Diwani, H. I., Bioorg. Med. Chem., 2006, 7324.
[7] Jordan, A. D.;Vaidya, A. H.; Rosenthal, D. I.; Dubinsky, B.; Kordik, C. P.; Sanfilippo, P. J.; Wu, W.; Ritz, A. B., Bioorg. Med. Chem., 2002, 12, 2381.
[8] Bosford, F. R.; Curd, F. H. S.; Rose, F. L., Imperial Chemical Industries Ld; British Patent 593, 499; Chem. Abstr., 1948, 42, 2291.
[9] Orjales, A.; Mosquera, R.; Labeaga, L; Rodes, R., J. Med. Chem. 1997, 40, 586.
[10] Zawisza, T.; Wagner, E., Pol. J. Chem. 1985, 59, 149; Balasubramaniyan, V.; Balasubramaniyan, P.; Wani, M. J., Indian J. Chem. Sect. B, 1990, 1092.
[11] Papa, D.; Schwenk, E.; Villani, F.; Klingsberg, E., J. Am. Chem. Soc., 1948, 70, 3356.
[12] Vasu, Nirmala, K. A., Chopra, D., Mohan, S., Saravanan, J., Acta Cryst. C, 2004, 60, o636; Bradley, D. A., Godfrey, A. G., Schmid, C. R., Tetrahedron Lett., 1999, 40, 5155.
[13] Baltrusis, R.; Beresnevicius, Z.; Vizgaitis, I.; Gatilov, Y. V., Khim. Geterotsikl. Soedin., 1981, 1669; Chem. Abstr., 1982, 96, 85477.
[14] Scheibye, S.; Kristensen, J.; Lawesson, S. O., Tetrahedron, 1979, 35, 1339.
[15] David, J. A.; Davis, F. B., J. Am. Chem. Soc., 1935, 57, 2627.
[16] Hartmann, V. H.; Reuther, I., J. Prakt. Chem., 1973, 315, 144.
[17] Klare, S. M.; Emmet, E. R., J. Am. Chem. Soc., 1930, 52, 2137.
[18] Edman, P., Acta Chem. Scand., 1950, 4, 283.
[19] Markovic, R.; Shirazi, A.; Dzambaski, Z.; Baranac, M.; Minic, D., J. Serb. Chem. Soc., 2003, 68, 1.
[20] Dietze, P. E., J. Org. Chem., 1992, 57, 1042.
[21] Omar, M. T.; Fouli, A.; El-Garhi, M. Z., Bull. Chem. Soc. Jpn., 1991, 64, 750.
[22] Henry, L.W.; Chrles, A. B., Am. Chem. J., 1911, 45, 446; Chem. Abstr., 1911, 5, 26464.
[23] Shirai, H; Yashiro, T., Nagoya Shiritsu Daigaku Yakugakubu Kiyo, 1963, 50, 11; Chem. Abstr., 1964, 61, 13302e.
[24] Baumann, N., Sung, M., Ullman E. F., J. Am. Chem. Soc. 1968, 90, 4157; Brockmann, H.; Knobloch, G., Tetrahedron Lett., 1970, 11, 267; Desmoni, G.; Gamba, A.; Righetti, P. P.; Tacconi G., Gazz. Chim. Ital., 1972, 102, 491.
[25] Omar, M. T.; EL-Aasar, N. K.; Saied, K. F., Synthesis, 2001, 413.
[26] Jawetz, E.; Melnick, J. L.; Adelberg, E. A., Review of Medical Microbiology. Lang Medical Publication, Los Altos, California, 1974.
[27] Grayer, R. J.; Harbone, J. B., Phytochemistry, 1994, 37, 19.
[28] Muanza, D. N.; Kim, B.W.; Euler, K. L.; Williams, L., Int. J. Pharmacogn. 1994, 32, 337.
[29] Irob, O. N.; Moo-Young, M.; Anderson, W. A., Int. J. Pharmacogn., 1996, 34, 87.

